A Case to Displace: Comparing Overhead Air Supply with Displacement Ventilation

October 6, 2023

Presenters

Don Horkey, PE, CxA

Engineering Lead

- 29 Years Design
- Commissioning Agent
- 250+ Education Projects

Matthew Strasser, PE

Senior Mechanical Engineer

- 17 Years Design
- Region Discipline Leader
- 110 Education Projects

What is Displacement

- Relies on gravity to ٠ distribute air to a space.
 - Low Velocity at Floor • Level.
 - Displaces warmer, less • dense air

1 diffuser

5 return

3 near zone

4 thermal plume

- Creates a vertical • temperature gradient.
- ASHRAE : Fully Stratified ٠ System
 - No mixing in occupied • zone.

What is Displacement?

Floor Applications

 Office, Large Volume Spaces

Sidewall Applications

- Ideal for Classrooms
- Integrated into Architecture
 - Free up ceiling space
 - Heavy-duty construction
 - Various options for locations, colors, sizes

What is Displacement?

What are the comfort and IAQ benefits?

/ a mare in

Comfort and Indoor Air Quality

1 diffuser

5 return

3 near zone 4 thermal plume

Comfort: Thermal Comfort

- Less drafty.
- Reduces cold spots.

Comfort: Acoustics

- Low velocities \rightarrow Less Noise
- Positive impact on student performance

Comfort and Indoor Air Quality

IAQ: Removal of Contaminants

- Displacement is more effective at reducing exposure.
- Less time for contagions to remain in air.
- Leads to less illness/absentees.
- Overhead mixing fights stratification.

Comfort and IAQ

IAQ: Lower CO2

- Studies correlate CO2 levels with occupant cognitive performance.
- More evident for strategic/creative activities.

CO₂ Concentration [ppm]

Supply Air is warmer than an overhead mixing system. 55°F vs 64°F Increased Economizer Hours (Free Cooling)

Lower Velocities (Fan HP)

Overhead Mixing: ~400-500 fpm Displacement: ~50-90 fpm Improved Ventilation Effectiveness Less Outdoor Air (ASHRAE 62.1)

Outside Air Heating/Cooling

358 CFM
$$\begin{cases} 900 ft^2 \times 0.12 \frac{CFM}{ft^2} = 108 CFM \\ 25 Persons \times 10 \frac{CFM}{Persons} = 250 CFM \end{cases}$$

Outdoor Air Required (Poorly Mixed)

• 358 *CFM* \div **0.8** (*E_Z*) = 448 *CFM*

Outdoor Air Required (Well Mixed)

• 358 *CFM* \div **1.0** (*E_Z*) = 358 CFM

Outdoor Air Required (DV)

• 358 *CFM* \div **1.2** (*E_Z*) = 298 *CFM*

- Cooling for 15 classrooms
 - Poor Overhead 45 tons
 - Well Designed Overhead 36 tons
 - Displacement 30 tons
- Heating for 15 classrooms
 - Poor Overhead 578 MBH
 - Well Designed Overhead 462 MBH

DLRGRU

- Displacement 385 MBH
- 20% 50% more OA needed

- Energy Savings in Primary Schools
 - Energy Model comparing Induction Displacement Ventilation with Active Chilled Beams (ACB) to:
 - DOAS w/FCUs
 - VAV Air Handler System.
 - Zones 1-3: Displacement
 - Zone 4: Active Chilled Beam
 - Zone 5: Packaged DX units

- Reduction in total ventilation required per ASHRAE 62.1-2013
- Reduction in chiller energy due to reduced airflow for ventilation and supply
- Reduction in boiler energy due to reduced airflow for ventilation and supply
- Reduction in fan energy by eliminating FCU fans (DOAS FCU system)
- Reduction in total heating and cooling capacity related to reduction in peak outside air required

DLRGROUP

*Flat Energy Rates were applied based on local utility data (MN)

Integration into Buildings

Wall Integrated

Thickened wall Bump out In stud space

Surface Mounted

Rectangular Quarter round Half round Chamfered corner

Induction Displacement

Floor mounted chilled beam Four manufacturers

Above the Ceiling

All air system

Similar VAV and duct sizing to overhead mixing

Above the Ceiling

DOAS AHU feeding FPVAV with sensible cooling coils

Smaller ducts

All air back to mechanical room is exhausted – no mixing between rooms

DLRGROUP

Above the Ceiling

Induction displacement fed from DOAS

Smaller ducts and VAV boxes

More piping

Mechanical Room

"Standard" DOAS AHU serving half of the classrooms in a 100k SF elementary.

Mechanical room

AHU with RA bypass for reheat

Limitations

Not Business As Usual

Get all stakeholders on same page

Heating

Should not heat with displacement

- Top heating
- Face heating
- Radiant ceiling panels
- Finned tube

Near Zone

Coordinate layout with furniture and occupants to avoid drafts immediately next to diffuser.

30 ft

Low Ceilings

Need space to stratify – about 1°F -1.8°F per foot height.

Too low of a ceiling – noticeable temperature gradient

Wrap Up

Summary

Stratified System-

non-mixing.

s III.e

Helps reduce probability of contagions due to

Low Velocities -Air is delivered at lower Balla velocities resulting in comfort benefits.

Flexible Integration-Can be applied in a variety of manners and spaces.

Energy Consumption-Ventilation effectiveness, supply temperatures help reduce energy consumption.

Effective in Minnesota -Energy models show cost savings in northern climates.

References

- <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9310363/figure/Fig1/</u>
- <u>https://pubmed.ncbi.nlm.nih.gov/35911865/</u>
- <u>https://www.sciencedirect.com/science/article/pii/S266620272030032X</u>
- <u>https://www.priceindustries.com/content/uploads/assets/literature/engineering-guides/displacement-ventilation-engineering-guide.pdf</u>
- <u>https://www.titus-hvac.com/file/12675/Airborne Combined Document_V4.pdf</u>
- <u>https://www.ashrae.org/file library/technical resources/covid-19/ashrae-acgih-covid-19-white-paper.pdf</u>
- <u>https://scholarbank.nus.edu.sg/handle/10635/45912</u>
- <u>https://www.sciencedirect.com/science/article/pii/S0360132321008805</u>

