

Who we are

→UNDAUNTEDK12

Our mission is to support America's K-12 public schools to make an equitable transition to zero carbon emissions while preparing our youth to build a sustainable future in a rapidly changing climate.

- Healthy buildings, healthy students
- Equity & justice
- Jobs today & tomorrow
- Leading by example

How we work

Awareness building

Policy development & advocacy

Coalition building

Thought leadership

PMI 5UNDAUNTEDK12

HVAC Choices for Student Health and Learning

What Policymakers, School Leaders, and Advocates Need to Know

New web resources for the Inflation Reduction Act

The Inflation Reduction Act (IRA) is the largest investment in climate and clean energy in United States history. Billions of dollars are now available to schools for going green.

THE INFLATION REDUCTION ACT

brings new federal funding to schools that embrace clean energy!

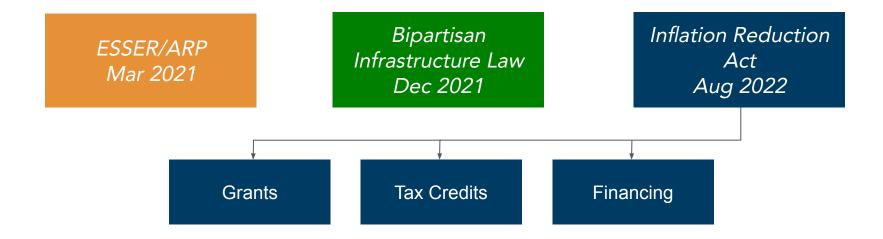
WHAT

clean energy technologies does the Inflation Reduction Act support?

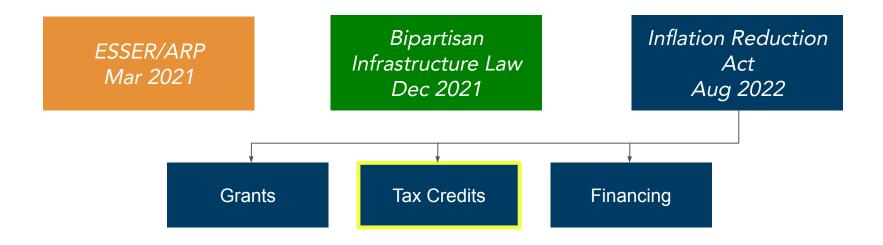
WHY

should schools invest in clean energy technologies?

WHO


benefits from the Inflation Reduction Act?

HOW


do schools get reimbursed by the Federal government?

https://www.undauntedk12.org/schools-and-the-ira

The federal funding context for schools

Largest opportunity is the clean energy tax credits

....and they are available now!

What's so special about the clean energy tax credits?

Non-competitive

Cash reimbursement

Available until 2032+

Unlimited funding

7

Tax credits support this clean energy equipment at schools

1. Solar energy

2. Energy storage

3. Ground-source heat pumps

Sec 48:

Investment Tax Credit

4. Electric school buses

Sec 45W:

Commercial Clean Vehicle Tax Credit

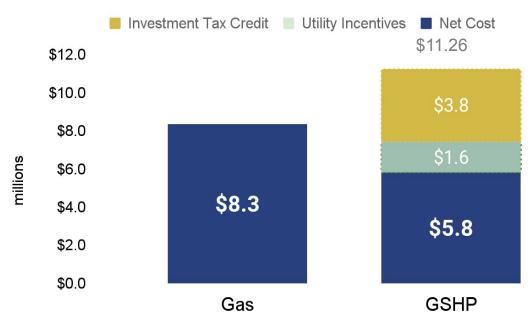
5. EV charging equipment

Sec 30C:

Alternative Fuel Refueling Property

What is Direct Pay (aka Elective Pay)?

The IRS mechanism through which non-taxable entities (like schools!) convert tax credits to cash reimbursements.


https://www.irs.gov/pub/irs-pdf/p5817.pdf

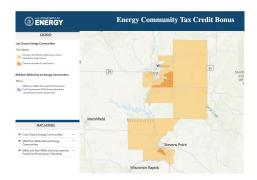
https://www.irs.gov/pub/irs-pdf/p5817e.pdf

Tax credits can make clean energy the *most* affordable option

Cost estimates for HVAC system installation w incentives (Gas vs Ground-Source Heat Pump)

Policy goals & key concepts

Labor standards


Prevailing wage and apprenticeship requirements

Click here.

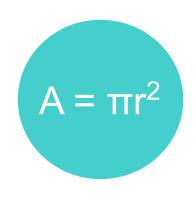
Target Communities

Communities with coal closure, unemployment, rural area, low-income

Click here.

Domestic Content

Use of 100% domestic steel & iron and % of manufactured products


The Inflation Reduction Act of 2022 offers a historic investment in the clean energy economy. U.S. manufacturing, and family sustaining jobs. Core to the law is a set of tax credit to so survival and the second of the second o

of color, contributing to economic and racial inequality. Black manufacturing employment, for example, has fallen by 30% since the 1990s. ³ The outsourcing of U.S. manufacturing also exacerbated global industrial climate pollution, as energy-intensive manufacturing shifted to countries with lower environmental and labor standards and higher emissions.

This legacy of outsourcing has contributed to deep U.S. dependency on highly concentrated overseas supply chains for solar, wind, battery, and other clean technologies. As we build the growing clean energy economy, we face a clear

Click <u>here</u>.

How much are credits worth? Know your formulas.

How do you calculate the area of a circle?

Sec. 48: Investment Tax Credit (ITC)

✓ All locations qualify for base credit. New construction and renovations qualify.

Cost basis

Cost of installing eligible equipment

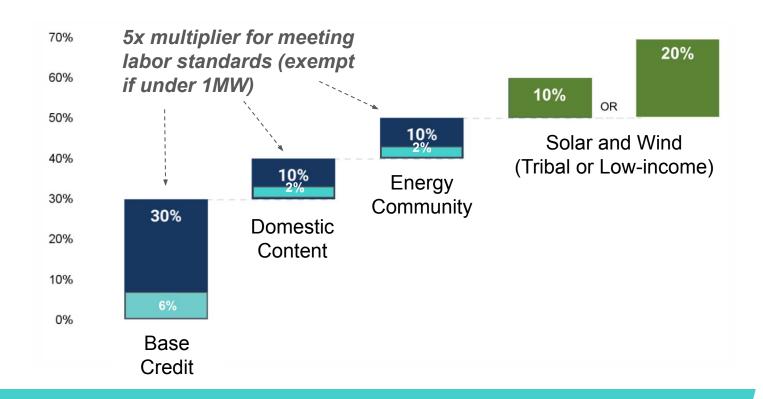
Cost basis determined based on specific technology.

Base / Bonus Credits

6% - 50%

based on location, labor standards, domestic content, project size, commence construction date

+ 10-20%


for solar & wind through competitive process for certain sites.

Other \$?

Reduce by up to 15% for use of tax-exempt financing

Grants and tax credits can not exceed total costs.

Base and bonus credits for Sec 48 ITC

Sec. 48: Investment Tax Credit - Example

	Cost basis	Rate	Adjusted rate	=	Estimated value
Ground-source heat pumps	\$10,000,000	40%	34%		\$3,400,000
Solar	\$2,000,000	30%	25.5%		\$510,000
Energy storage	\$500,000	30%	25.5%		\$127,500
Total estimated investment tax credit					\$4,037,500

Sec. 45W: Commercial Clean Vehicle Tax Credit

✓ Must be from a qualified manufacturer. List available <u>here</u>.

Lesser test

15% of cost OR incremental cost if hybrid

30% of cost OR incremental cost if electric

Maximum

\$15,000 per vehicle *if* < *14,000 pounds*

\$40,000 per vehicle *if* > 14,000 pounds

Other \$?

Tax credits will be reduced so that grants + tax credits do not exceed the cost of the equipment.

Sec. 45W: Clean Commercial Vehicle - Example

A school district purchases 100 electric school buses from an eligible manufacturer at a price of \$400,000 each with an incremental cost of \$300,000 over a comparable vehicle.

100 times the
buses lesser of:

\$90,000 (30% of \$300k incremental cost) per bus

equals

\$4,000,000 in expected tax credits

\$40,000 maximum per bus

Sec. 45W: Clean Commercial Vehicle - Example w grants

A school district purchases 100 electric school buses from an eligible manufacturer at a price of \$400,000 each with an incremental cost of \$300,000 over a comparable vehicle. The district receives \$375,000 in grants for each bus.

100 times the buses lesser of:

\$90,000 (30% of \$300k incremental cost) per bus

equals

\$4,000,000 but tax credits are reduced to **\$2,500,000** because of grants.

\$40,000 maximum per bus

Sec. 30C: Alternative Fuel Refueling Property

✓ Must be located in qualifying areas. Check site address <u>here</u>.

Cost basis

Cost of installing each charging station

Rate

6%
if labor standards
are not met

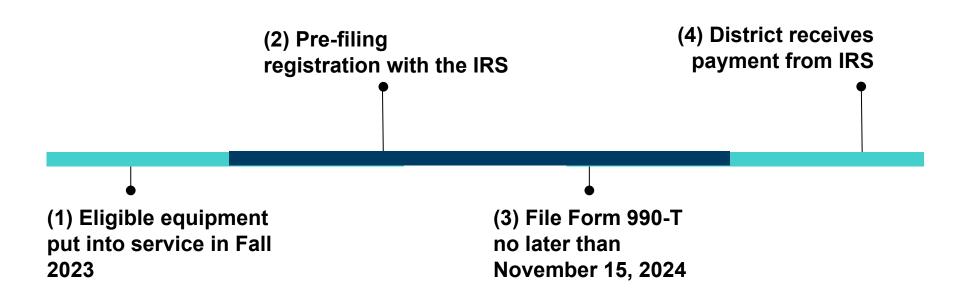
30% if labor standards are met

Maximum

\$100,000 limit per charger (not per site)

Sec. 30C: Alternative Fuel Refueling Property - Example

A school district installs 10 electric vehicle charging stations at an eligible location at a cost of \$115,000 per station. The project met labor standards which included meeting prevailing wage and apprenticeship requirements.


10 stations times

\$34,500 per charging station (30% of \$115,000)

equals

\$345,000 in expected tax credits

Here's an example

Example for equipment placed into service by a school with a fiscal year from July 1, 2023 to June 30, 2024.

Where do you go from here?

Laying the groundwork

- Put together your IRA team
- Learn and share about the IRA with your team
- Identify a budget for professional services
- Review "energy communities" & 30C eligibility map for your district

Claim credits for 2023 completed projects

"Get what you got"

Evaluate current projects for credits

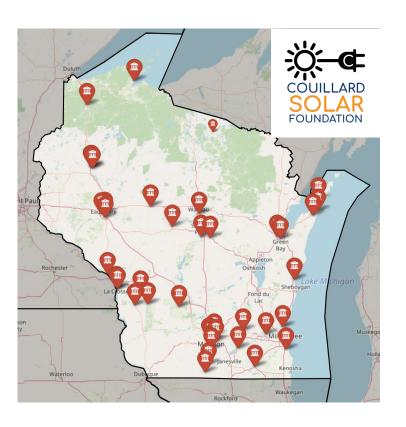
"Apply the new rules of the road"

Re-evaluate current projects for clean alts

"Take another look"

Strategic planning and preparation

"New business as usual"


St. Germain Elementary School - 2023

Utilizing IRA Eligible Technologies in Wisconsin Schools

Henry Hundt Sustainability Lead hhundt@hoffman.net 608.422.1321

Additional Funding for IRA Eligible Technologies in Wisconsin

Solar on Schools/Couillard Solar Foundation – Panel Donation

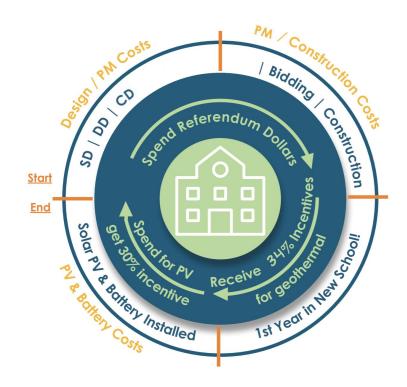
- Technology Support: Solar PV
- Grant amount depends on project size
- Rolling application
- For PV systems smaller than 100 kW, grants are awarded for up to 50% of the system size.
- For PV systems 100 kW and larger, grants are awarded for 50kW DC
- Learn more at <u>Midwest Renewable Energy</u> Association

Couillard Solar Canopies – Outdoor Classroom and Recreation Space

Entire structure cost (not just panels) is eligible for direct pay of ITC

All profits from from sales goes back to supporting solar on schools in Wisconsin

Additional Funding for IRA Eligible Technologies in Wisconsin



Business Customer Solar PV Rebates				
System Size in kW (DC)	Rebate per kW (DC)	Max Rebate		
Up to 5 kW	\$200	\$1,000		
5-10 kW	\$1,000 + \$150 per kW above 5 kW	\$1,750		
10-100 kW	\$1,750 + \$125 per kW above 10 kW	\$13,000		
100-300 kW	\$13,000 + \$100 per kW above 100 kW	\$33,000		
300-500 kW	\$33,000 + \$85 per kW above 300 kW	\$50,000		
500+ kW	\$50,000 + \$0 per kW above 500 kW	\$50,000		

Focus on Energy – Prescriptive Incentives

- Technology Support: Solar PV, Geothermal
- Incentive amount depends on project size
- Solar Incentives have been falling year to year, expect to cover 5%-10%
- Incentives for geothermal depend on overall facility design
- Learn more at <u>Focus on Energy</u>

Careful Planning Pays Off – Wisconsin School Implementation Scenario

Example Project in Wisconsin – Phase 1

Referendum Funded Geothermal HVAC: 34% ITC Elective Payment

96,000 sqft Facility	Geothermal System (\$65/sqft)	Gas Boiler & Chiller System (\$48/sqft)
System Cost	\$6,240,000	\$4,608,000
IRS Incentive YR 1	\$2,121,600	-
Net System Cost	\$4,118,400	\$4,608,000
O&M Savings YR 1	\$15,000 (varies by utility)	-
Simple Payback	0 years	

Typical Payback **without** ITC can be very large, very between 15 to 25 years depending utility gas and electricity rates

Example Project in Wisconsin – Phase 2

Elective Payment Incentive Funded Solar PV: 30% ITC

Rooftop Solar	300kW of Solar Panels
System Cost	\$630,000
IRS Payment	\$189,000
Focus on Energy	\$33,000
Solar on School	\$20,000
Net System Cost	\$388,000
Simple Payback	6yrs-12yrs (depends on utility)

PV Equipment Lifetime: 30yr warranty on panels, budget for inverter replacement in year 15

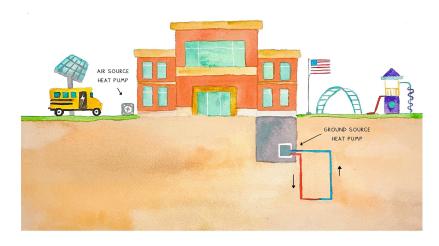
Example Project in Wisconsin – Phase 2

Parting Comments on Solar, Batteries and Geothermal in Wisconsin

- Any plan for solar and geothermal should also look at additional energy efficiency measures with good paybacks
- Add solar on new or recently replaced roofs
- Ground mount solar is cost competitive with rooftop systems can be done at any time
- Geothermal and solar PV are a great pair
- Plan for future loads when installing PV: Electric buses, EV charging, and classroom technology.
- Solar, geothermal and battery systems are great tools for classroom learning

Want more on IRA and ground-source heat pumps?

Inflation Reduction Act


- Schools and the IRA including 5 Actions to Get Started Our web resources
- Schools Can Use These Little-Known, Unlimited Funds... Article in EdWeek
- <u>Inflation Reduction Act</u> 90-min webinar from Eversource's Zero Energy Buildings Conference
- <u>US Dept of the Treasury</u> Fact Sheet on Schools & the IRA

HVAC System Choices / Ground-Source Heat Pumps

- HVAC Choices for Student Health & Learning Report with RMI for non-technical audiences
- Ground Source Heat Pumps Eversource Zero Energy Buildings Conference
- <u>Making Climate Smart HVAC Investments</u> Webinar in partnership w AASA featuring Prince George's County Maryland

Thank you!

COOL SCHOOLS HAVE HEAT PUMPS

→UNDAUNTEDK12NICOLE KELNER

Sara Ross, Co-founder UndauntedK12 sara@undauntedk12.org

Henry Hundt, Sustainability Lead Hoffman Planning, Design & Construction hhundt@hoffman.net 608.422.1321

Q&A

Financial Impact of Solar, Efficiency, and Demand

Management

Northland Pines High and Middle School	2016	2019
Total Electricity Use in MWh (thousands of KWh)	1509	1208
Solar Electricity Use included in Total in MWh	none	193
Percentage of Total from Solar (not including 8% of solar production sold to the grid)	none	16%
Solar Electricity Cost (until a buy-out of the PV system owned from investors at market value)	none	\$27,200
Total Electricity Cost including Solar Cost	\$160,718	\$111,936
Annual Cost Savings from Solar with Demand Management and Efficiency	-	\$48,782

Integrating IRA incentives into costs at all levels

First Costs

Ensure incentives are accurately incorporated in budgets and cost estimates

Lifecycle Costs

Analyze opportunity to operate electric machines at low- and fixed-cost using solar energy

Societal Costs

Include "social cost of carbon" in financial analyses to future-proof decision-making in an evolving regulatory landscape.

Policy is shifting "societal costs" into "lifecycle costs" (think fines!)

First Costs

Ensure incentives are accurately incorporated in budgets and cost estimates

Lifecycle Costs

Analyze opportunity to operate electric machines at low- and fixed-cost using solar energy

Societal Costs

Include "social cost of carbon" in financial analyses to future-proof decision-making in an evolving regulatory landscape.

Future-proofing essential in rapidly changing environment

First Costs

Ensure incentives are accurately incorporated in budgets and cost estimates

Lifecycle Costs

Analyze opportunity to operate electric machines at low- and fixed-cost using solar energy

Societal Costs

Include "social cost of carbon" in financial analyses to future-proof decision-making in an evolving regulatory landscape.

- Common practice in Fortune 500
- Boston BERDO Ordinance \$234/ton
- New York State \$126/ton (\$54 to \$414)