What to consider for updating your HVAC system

November 1, 2022 | 12:05-12:55 PM

Introductions

Russ Schumacher

Co-Founder and Director of Design and Commissioning **Nexus Solutions**

David Bavisotto

Vice President, Sales and Business Development Illingworth-Kilgust Mechanical

Today's agenda

\checkmark Why update

 \checkmark When to update

 \checkmark Where to start

 \checkmark What type of system

 \checkmark Who is on your team

Building components

SHELL

Building Envelope

Interior ComponentsImage: Component SectorImage: Component S

8

Glossary of today's terms

term	definition
ASHRAE	American Society of Heating and Refrigeration and Air Conditioning Engineers Basis for Building Codes and Mechanical System Design
HVAC	Heating Ventilating and Air Conditioning Acronym for a building's mechanical equipment
IAQ	Indoor Air Quality Refers to the air quality within and around building structures, especially as it relates to the health and comfort of building occupants
AIR HANDLING UNIT	Mechanical Unit which has dampers, filters, heating and cooling coils, and a fan to circulate air throughout the building.
Ventilation	The intentional introduction of fresh outdoor air into occupied spaces.
Filter	Porous material component within the air handling unit which filters the building impurities from the circulated air.

Why update

Improved Equipment Operation

Why are you updating?

Comfortable Learning Environment

Main purpose of HVAC systems is to provide occupants with "conditioned" air

Comfortable and safe work (learning) environment "Conditioned" air means that air is clean and odor-free, and the temperature, humidity, and movement of the air are within certain comfort ranges

Air

Conditioning

"Ventilation" air is the amount of code required outdoor fresh air required by the space (Varies with space type)

Improved

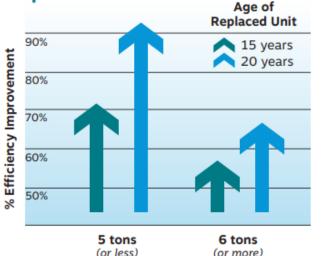
Ventilation

Reduced Maintenance

How is your maintenance documented?

					Bud	get Watch					
A	t or beyond useful life	less than 3 years from end of useful life	n		han 5 years from of useful life		Over 5 years away from end of useful life				
						chool District					
		Life		Expectancy	Line						
Unit ID	✓ Asset Description	Expectanc Vintage per ASHR/	v Li		Existing Deficie	Location	Manufacturer	Tonnage/MBH	Model Number	Serial Number	Refrigerant Type
BL-01	Boiler		25	10		North Bldg	Fulton	500 MBH	PHW-500	103725	
BL-02	Boiler	2007	25	10		North Bldg	Fulton	501 MBH	PHW-500	103724	
BL-03	Boiler	2007	25	10		North Bldg	Fulton	502 MBH	PHW-500	108393	
BL-04	Boiler	2011	25	14		South Bldg	Lochinvar	503 MBH	KEN501	K11H10203592	
BL-05	Boiler	2016	25	19		North bldg	M3 Riverside Hydro	onics 504 MBH	500WB 130A-CBMI	F000332	
BL-06	Boiler	2018	25	21		South Bldg	Cleaver Brooks	700hp	CFH-700-10-15ST	014614-2-1	
BL-07	Boiler	2015	25	18		south bldg	HTP	114 MBH	UFT-120W	060915SA500096	
BL-08	Boiler	2015	25	18		south bldg	HTP	115 MBH	UFT-120W	060915SA500074	
BL-09	Boiler	2018	25	21		south bldg	HTP	116 MBH UFT-199W		032818SA900275	
BL-10	Boiler	2018	25	21		south bldg	HTP	117 MBH	UFT-199W	032818SA900257	
BL-11	Boiler	2017	25	20		south bldg	HTP	118 MBH	UFT-199W	011917SA900051	
Cabinet cooler	Pkgd (HP)- AC (All)	2016	25	19			Thermal Edge	119 MBH	HC10148612	1616040001	
CH-1	Chiller	2014	23	15		Mechanical Room	AEC	113 tons	03RC-420	44C1049	R134A
CH-2	Chiller	2012	23	13		Mechanical Room	AEC	195 tons	RSR-195	42H0430	R134A
CH-3	Chiller	2014	23	15		Mechanical Room	AEC	113 tons	GSRC-420	44C1049	R134A
CH-4	Chiller	2012	23	13		Mechanical Room	AEC	195 tons	RSR-195	42H0430	R134A
CH-5	Chiller New South Addition	2022	23	23		Mechanical Room	Daikin		AW018BJJNKKNOB	STNU211200095	R134A
Cooler - South B	eak Cooler (commercial refrigeration)	x x		#VALUE!			True	#N/A	T-49	748359	
CU-1	Condensing Unit		20	#VALUE!		Roof	AAON				
CU-10	Condensing Unit	2014	20	12		Ground Level East S	ide Heatcraft		LNHD08A058	T14E16390	
CU-11	Condensing Unit	2019	20	17		Roof	Heatcraft		BDT1200M6D	T19L05240	
CU-1MUA-2	Split DX- CU	2012	20	10			Carrier		38AUDA16AOA6AOAOAO	3012U33465	
CU-2	Condensing Unit	2017	20	15		Roof	AAON		CFA-050-D-A-3-GC00L	201710-CNCV03564	R410A
CU-3	Condensing Unit	2012	20	10		Ground Level North	Side Heatcraft		LNHD08A058	T12H18613	
CU-4	Condensing Unit	2014	20	12		Ground Level North	Side AEC	113 tons	RC-420	44E0615	R134A
CU-5	Condensing Unit	2014	20	12		Ground Level North	Side AEC	113 tons	RC-420	44E0616	R134A
CU-6	Condensing Unit	2012	20	10		Ground Level North	Side Heatcraft		LNHD08A058	T12H18614	
CU-7	Condensing Unit	2014	20	12		Ground Level East S	ide Heatcraft		LNHD08A058	T14E10494	

Are maintenance costs increasing?


		Asset Cost									
					Company Na	me: School Wisconsin US	A				
		_	_		_		_	_			
Unit ID 🚽	<u>2020</u>	Description 2020	• PM 2020 •	<u>2021</u> 💌	Description 2021 💌	PM 2021 📑	2022	Description 2022	PM 2022	Repairs 🗾	
Bar Line	\$25,062.20 Inst	all Refrigerant Lines		\$443.10			\$1,618.00			\$27,123.30	
BL-01	\$1,555.26		\$727.09	\$2,278.45		\$781.09	\$30.84	Parts	\$820.18	\$3,864.55	
BL-02	\$2,154.50		\$727.09	\$419.80		\$781.09	\$30.84	Parts	\$820.18	\$2,605.14	
BL-03	\$222.45		\$727.09			\$781.09	\$30.84	Parts	\$820.18	\$253.29	
BL-04	\$1,536.40		\$727.09	\$1,614.60		\$781.09	\$30.84	Parts	\$820.18	\$3,181.84	
BL-05	\$2,709.92		\$727.09			\$781.09	\$30.84	Parts	\$820.18	\$2,740.76	
BL-06	\$6,180.69		\$727.09			\$781.09	\$30.84	Parts	\$820.18	\$6,211.53	
BL-07	\$222.45		\$727.09			\$781.09	\$30.84	Parts	\$820.18	\$253.29	
BL-08	\$222.45		\$727.09			\$781.09	\$30.84	Parts	\$820.18	\$253.29	
BL-09	\$222.45		\$727.09			\$781.09	\$30.84	Parts	\$820.18	\$253.29	
BL-10	\$222.45		\$727.09	\$1,248.97		\$781.09	\$30.84	Parts	\$820.18	\$1,502.26	
BL-11	\$222.45		\$727.09			\$781.09	\$30.84	Parts	\$820.18	\$253.29	
Cabinet cooler	\$1,281.83									\$1,281.83	
CH-1			\$1,533.00	\$17,031.54		\$1,658.00	\$7,209.17		\$2,291.50	\$24,240.71	
CH-2	\$3,063.72		\$1,533.00	\$787.56		\$1,658.00	\$419.75		\$2,291.50	\$4,271.03	
CH-3			\$1,533.00	\$7,660.60		\$1,658.00			\$2,291.50	\$7,660.60	
CH-4			\$1,533.00	\$2,811.56		\$1,658.00	\$94,312.25		\$2,291.50	\$97,123.81	
CH-5 New South Addition 2022										\$0.00	
Cooler - South Break	\$2,455.26									\$2,455.26	
Cooling Tower										\$0.00	



Department of Energy's new minimum efficiency standards, for commercial packaged air conditioners and heat pumps, will go into effect on **January 1, 2023.**

The new minimum will result in an average increase in energy efficiency of 15% from the 2018 standards.

Expected Efficiency Improvement with Replacement

Develop a plan to assess and replace any existing equipment that is past its published useful life Equipment plans specific to your needs:

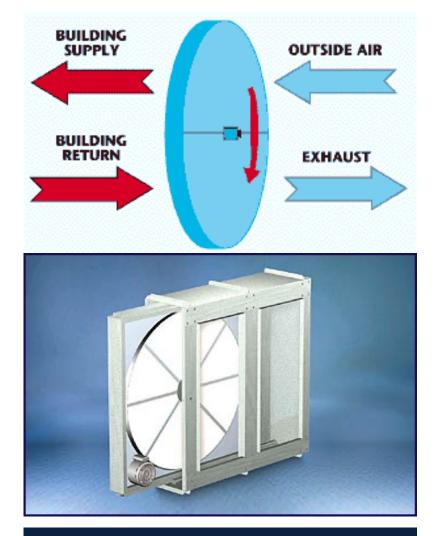
- Proper maintenance of equipment, repairs as needed
- Identify a qualifying basis for replacements based on age/ condition
- Prioritize replacements, considering factors such as critical needs, industry conditions

Replace qualifying equipment as soon as funding allows:

- ✓ Equipment costs have risen 40% since 2021 and continue to rise
- Lead times are long due to supply chain issues
- ✓ In 2025 new HVAC equipment will require A2L refrigerants, which are "slightly flammable" further increasing costs



High Efficiency Boilers



High Efficiency Water Heaters

Condensing Unit

Energy Recovery

Improved Indoor Air Quality and Filtration

Ventilation code requirements "The Solution to Pollution is Dilution"

ANSI ASHRAE Standard 52.1-2019 (Supervalue ANSI/ASHRAE Standard 62.1-3216) Indiade ANSI/ASHRAE addends hand in Appendix O

Ventilation for Acceptable Indoor Air Quality

Bast Appartols: O for approval describe AD-BAE and the Astantae Hadwal Insulants button.

The Standard is order continuous representativity a Standard Device of Project Convention (DPC) for which the Standards Convertises for metallished information of paper for regular publication of administrative research, which approximate the transp. Constrained, internative relation to image the regular any part of the Standards, horizontation for source settings of diagon can be from a set of the ND-RNR[®] which provides the approximation to interface (i).

The latest extra of an 40x8647 insolution may be performed from the 40x8647 outline (source-attracting or from AD44648 Contenter Devices, 11% Table Cards, 100, Adams, CA 20029 2004, Tenal renders) advancing Fas 42% 221, 2129, Telephone XX4434-6920 (source-attracting in addition = 400x527-4723 (for orders) to and Canada, For reprint and renders per seven advances/performance.

RE SOLD ADDRESS INTO ADDRESS ADDRE ADDRESS ADD

TABLE 6-1 MINIMUM VENTILATION RATES IN BREATHING ZONE (This table is not valid in isolation; it must be used in conjunction with the accompanying notes.)

	People (Outdoor	Area O	utdoor		Defa	ult Values		
Occupancy Category		Rate P _p		Rate ? _a	Notes	Occupant Density (see Note 4)		l Outdoor see Note 5)	Air Class
cintgor,	cfm/person	L/s·person	cfm/ft ²	L/s·m ²	-	#/1000 ft ² or #/100 m ²	cfm/person	L/s·person	
Correctional Facilities									
Cell	5	2.5	0.12	0.6		25	10	4.9	2
Dayroom	5	2.5	0.06	0.3		30	7	3.5	1
Guard stations	5	2.5	0.06	0.3		15	9	4.5	1
Booking/waiting	7.5	3.8	0.06	0.3		50	9	4.4	2
Educational Facilities									
Daycare (through age 4)	10	5	0.18	0.9		25	17	8.6	2
Daycare sickroom	10	5	0.18	0.9		25	17	8.6	3
Classrooms (ages 5-8)	10	5	0.12	0.6		25	15	7.4	1
Classrooms (age 9 plus)	10	5	0.12	0.6		35	13	6.7	1
Lecture classroom	7.5	3.8	0.06	0.3		65	8	4.3	1
Lecture hall (fixed seats)	7.5	3.8	0.06	0.3		150	8	4.0	1
Art classroom	10	5	0.18	0.9		20	19	9.5	2
Science laboratories	10	5	0.18	0.9		25	17	8.6	2
University/college laboratories	10	5	0.18	0.9		25	17	8.6	2
Wood/metal shop	10	5	0.18	0.9		20	19	9.5	2
Computer lab	10	5	0.12	0.6		25	15	7.4	1

Improved Indoor Air Quality and Filtration

The importance of filtration

What filtration levels are important to your district?

HUMAN HAIR 50-180 µm >

FINE BEACH SAND 90µm >

GRAIN OF SALT 60µm >

WHITE BLOOD CELL 25µm >

2000

GRAIN OF POLLEN 15µm >

DUST PARTICLE (PM10) <10µm >

RED BLOOD CELL 7-8µm 7

RESPIRATORY DROPLETS 5-10µm >

DUST PARTICLE (PM2.5) 2.5µm

BACTERIUM 1-3µm WILDFIRE SMOKE 0.4-0.7µm CORONAVIRUS 0.1-0.5µm T4 BACTERIOPHAGE 0.225µm ZIKA VIRUS 0.045µm

AquaBelle SOURCES Clearatream Dariel Loverbey, EPA Fi COLLABORATORS, RESEARCH - WEITING Camen Ang Inc .s) 2.5μm ·

Wildfire smoke can persist in the air for several days, and even months.

Fedical, Science Direct, SCIVP, Sacan Solosiowski, Petroclear, U.S. Dept. of Energ ART DRECTION Historian Schell Pollen can trigger allergic reactions and hay fever—which 1 in 5 Americans experience every year.

The visibility limits for what the naked eye can see hovers around 10-40µm.

Respiratory droplets have the potential to carry smaller particles within them, such as dust or coronavirus.

What filtration levels are important to your district?

ASHRAE STANDARD 52.2 - 2017 MERV RATING FILTRATION APPLICATION GUIDELINE

MERV STANDARD 52.5	AVERAGE ARRESTANCE	CONTROLLED CONTAMINANT	TYPICAL APPLICATIONS	TYPICAL AIR FILTER / CLEANER TYPE
16	n/a	0.30 - 1.00ppm particle size Talcum Dust	General Surgery	
15	n/a	All Bacteria Smoke	Hospital Inpatient Care	Bag Filter - Nonsupported microfine fiberglass or synthetic media.
14	> 98%	Most Tobacco	Smoking Lounges	12" - 36" deep w/ 6 - 12 pockets
13	> 98%	Droplet Nuclei (Sneeze) Bacteria	Superior Commercial Buildings	Box or Pleated Filters - Rigid Style Cartridge or Pleated Filters 2" to 12" deep may use lofted or paper media
12	> 95%	1.00 - 3.00ppm particle size Legionella, Welding Fumes	Superior Residential Buildings	Bag Filter - Nonsupported microfine fiberglass or synthetic media
11	> 95%	Humidifier Dust Lead Dust		12" - 36" deep w/ 6 - 12 pockets
10	> 95%	Auto Emissions		Box Filter - Rigid Style Cartridge Filters 2" to 12" deep may use
9	> 90%	Milled Flour	Hospital Laboratories	lofted or paper media
8	> 90%	1.00 - 3.00ppm particle size Mold Spores	Commercial Buildings	Pleated Filters - Disposable, extended surface area, thick with
7	> 90%	Hair Spray	Better Residential	cotton-polyester blend media & cardboard frame
6	85 - 90%	Fabric Protector Dusting Aids	Industrial Workplaces	Cartridge Filters - Graded density viscous coated cube or pocket filters, synthetic media
5	80 - 85%	Cement Dust Pudding Mix	Paint Booth Inlets	Throwaway - Disposable synthetic panel filter
4	75 - 80%	0.30 - 1.00ppm particle size Pollen	Minimal Filtration	Throwaway - Disposable synthetic or fiberglass panel filter
3	70 - 75%	Dust Mites	Residential	
2	65 - 70%	Sanding Dust Spray Paint Dust		Washable - Aluminum Mesh
1	< 65%	Textile / Carpet Fibers Lint	Window AC Units	Electrostatic - Self-charging woven panel filter

The solution to pollution is dilution...and filtration

Efficiency

If we replace MERV-8 filters with MERV-11 or MERV-13, what would happen to unit performance? Are adjustments required?

17 m

\$ ΔP Eff					
MERV 8 Pleated	MERV 11 Pleated	MERV 13 Pleated			
Cost	Approx 20% more	Approx 50 – 75% more			
SC 2" 500 FPM = 0.21"WG HC = 0.20"WG	SC = 0.33"WG HC = 0.31"WG	Only HC = 0.35"WG			
MERV 8	MERV 11	MERV 13			

Why update?

Students in well-maintained facilities score 11% higher on standardized tests

A study of the District of Columbia school system found, after controlling for other variables such as a student's socioeconomic status, that students' standardized achievement scores were lower in schools with poor building conditions. Students in school buildings in poor condition had achievement that was 6% below schools in fair condition and 11% below schools in excellent condition. (Edwards, 1991)

Similarly, Hines' (1996) study of large, urban high schools in Virginia also found a relationship between building condition and student achievement. Indeed, Hines found that student achievement was as much as 11 percentile points lower in substandard buildings as compared to above-standard buildings.

When to update

Equipment Lifecycle

Industry standard recommended equipment life

ashrae.org

ASHRAE Equipment Life Expectancy chart

ASHRAE is the industry organization that sets the standards and guidelines for most all HVAC-R equipment. For additional info about ASHRAE the website is www.ashrae.org

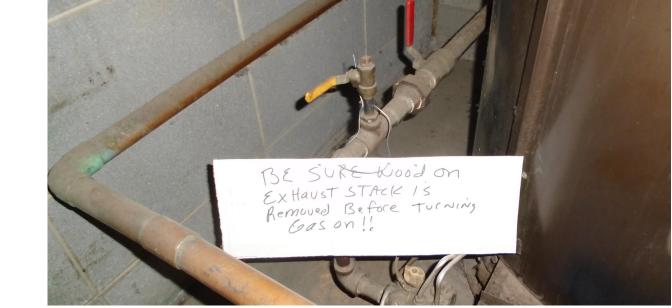
Equipment Item	Median Years	Equipment Item	Median Years	Equipment Item	Median Years
Air conditioners		Air terminals		Air-cooled condensers	20
Window unit Residential single or Split Package Commercial through-the wall		Diffusers, grilles, and registers Induction and fan coil units VAV and double-duct boxes	20 20	Evaporative condensers Insulation	20
Water-cooled package	15	Air washers	17	Molded Blanket	20 24
Heat Pumps		Ductwork	30	D	
Residential air-to-air Commercial air-to-air Commercial water-to-air	15 15 19	Dampers Fans	20	Pumps Base-mounted Pipe-mounted Sump and well	20 10 10
Roof-top air conditioners		Centrifugal Axial	25 20	Condensate 15	10
Single-zone Multi-zone	15 15	Propeller Ventilating roof-mounted	15 20	Reciprocating engines	20
Boilers, hot water (steam) Steel water-tube	24 (30)	Coils		Steam turbines	30
Steel fire-tube Cast iron	25 (25) 35 (30)	DX, water, or steam Electric	20 15	Electric motors	18
Electric	15		15	Motor starters	17
Burners	21	Heat Exchangers Shell-and-tube	24	Electric transformers	30
Furnaces Gas- or oil-fired	18	Reciprocating compressors	20	Controls Pneumatic	20
		Packaged chillers		Electric Electronic	16 15
Unit heaters Gas or electric Hot water or steam	13 20	Reciprocating Centrifugal Absorption	20 23 23	Valve actuators Hydraulic	15
Radiant Heaters		Cooling towers		Pneumatic Self-contained	20 10
Electric Hot water or steam	10 25	Galvanized metal Wood Ceramic	20 20 34	Self-contained	10

Preventative Maintenance

Equipment Lifecycle

HVAC component lifecycle

Component failure rates will depend largely on the owner's proactive approach with planned maintenance versus breakdown repair only.


A good planned maintenance program can add **20% or more life to existing equipment**.

No planned maintenance can deduct 20-30% from typical unit life expectancy.

HVAC Component Typical Life Expectancy	Typical Failure Rate Expectancy
Compressors	Typically 5-15 year range for failures. Most manufacturers warranty 1-5 years only.
Condenser Fan Motors	Starts after 3-5 years.
Blower Motor	Rarely fail in the first 10 years.
Blower Wheels	Rarely fail themselves; are typically replaced due to shaft or bearing failures.
Contactors	Typical wear item. Replace every few years.
Bearings	Typical wear item. Life span is 1-10 years.
Relays	Typical wear item. Replace every few years.
Thermostats	Low maintenance item. Failure rate is minimal. More subject to damage by occupant.
Timers	Typical life span 5-10 years.
Fan Blades	High wear item. Typically replaced with condenser fan motors after 3-5 years.
Condensers	Normally last unit life except for severe hail damage.
Evaporators	Normally last unit life unless filters are not changed regularly.
Heat Exchangers	Failure typically starts at 10 years due to rust and cracks. Note: newer units have thinner metal.
Gas Valves	Failures begin at 5-10 year range.
Igniters	Typical wear item. Should be replaced every few years.
Gas Regulators	Failures begin at 5-10 year range.
Actuators	Failures begin at 5-10 year range.
Circuit Boards	No-maintenance item. Failures are normally due to other component failures.

Is your equipment compliant?

The EPA began phasing out/ down refrigerants in 1990s

Initial focus was ozone depletion

Started with CFC's (R11, R12, etc.)

- Continued with HCFCs (R-22, R-500 etc) in early 2000s
- HFCs (R410A, R407C) planned to start next year

Primary focus for the last few years has been R22

- Since 2010, no new equip. could be shipped with R22
- Phaseout completed (As of 2020, NO "virgin" R-22 would be manufactured or imported)
- Available R22 would be based on supplier stockpiles and amount reclaimed by contractors, but R22 was expected to be available for servicing equipment for years.

The "Old" Strategy (12 months ago)

- Keep R22 equipment in proper operation and only replace when unit appears at or beyond useful life.
- Continue monitoring the cost of R22

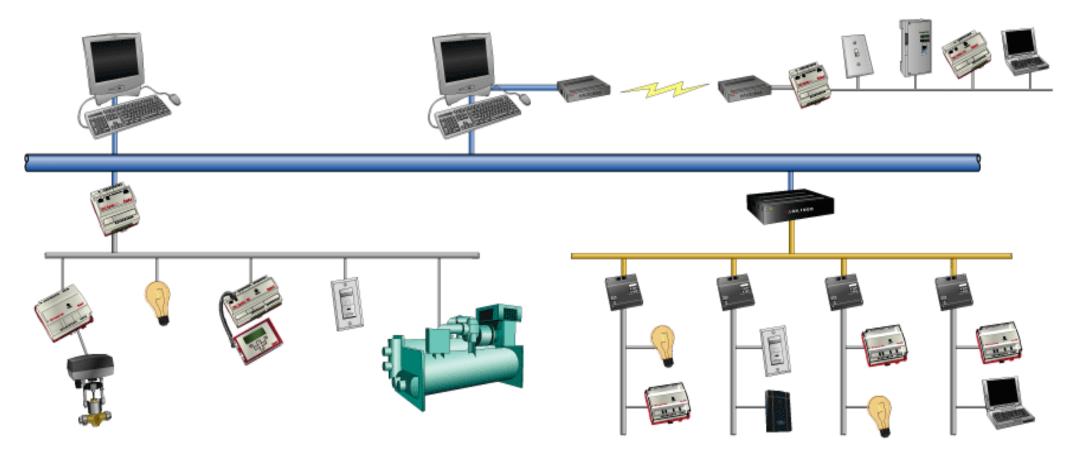
Phase Out Refrigerants

The best [performing] refrigerant for R22 equip. is R22

There is no direct replacement for R22 (i.e. you cannot simply begin adding a different refrigerant for repairs).

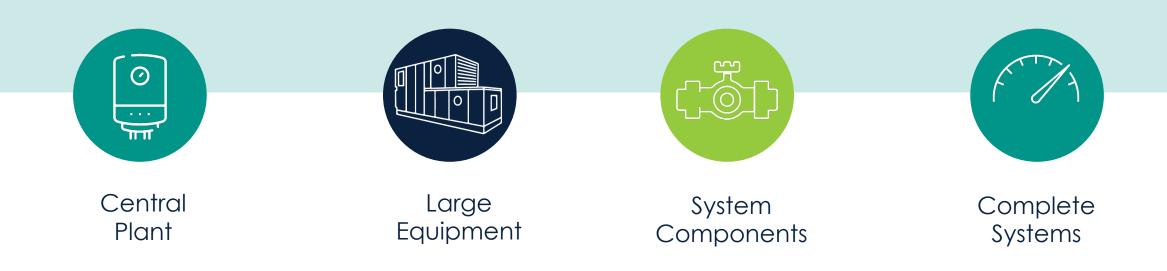
There is no R-22 "drop-in". Equip. needs to be converted to work with an approved R22 alternative, which <u>WILL</u> have a negative impact on unit performance.

There ARE numerous approved alternatives. Deciding on the "right" one for your school's applications must consider performance, cost, and the likelihood of success (initial conversion and ongoing maintenance).


Be Consistent...

- If equipment has multiple circuits, convert them all at once.
- Avoid use of different alternatives at the same site.

Controls System Obsolete

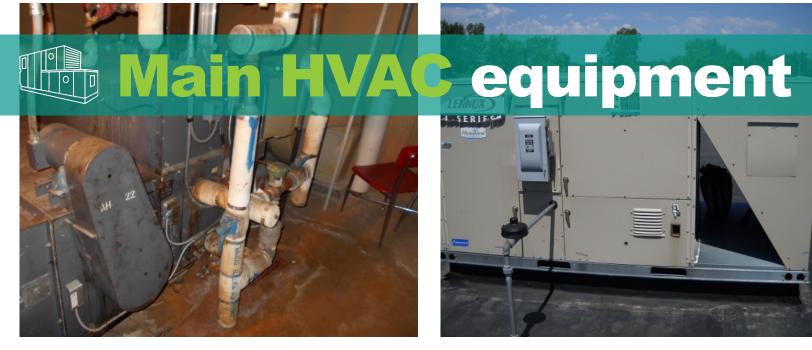

- ✓ Stand Alone Building Automation System
- ✓ Networked Building Automation System

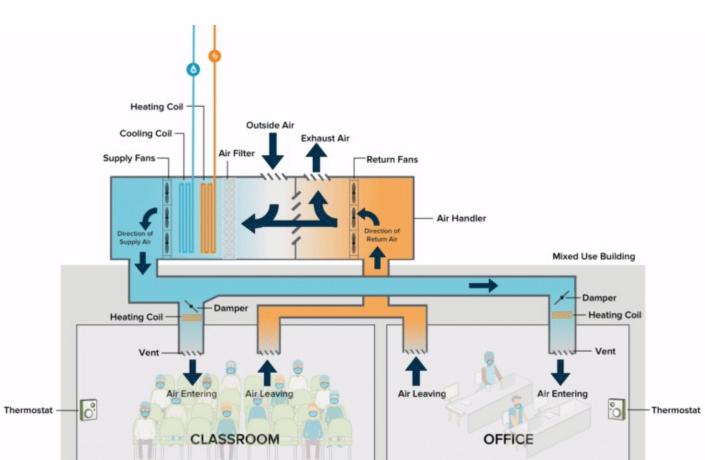
When to update?

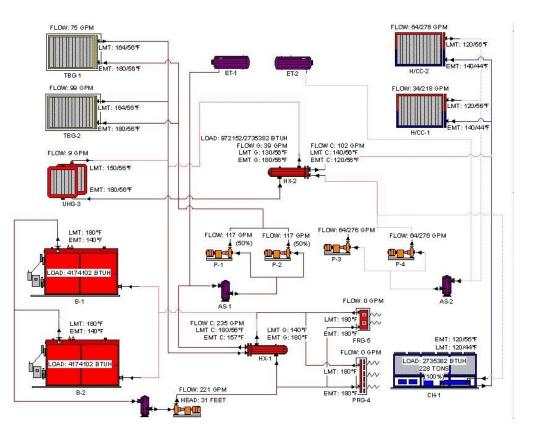
Answer: It depends...

- ✓ Code Compliance
- Planned Replacement
- ✓ Lifecycle Exceeded
- ✓ High Repair Costs
- ✓ Obsolescence
- Equipment no Longer Serviced
- Upcoming Building Project

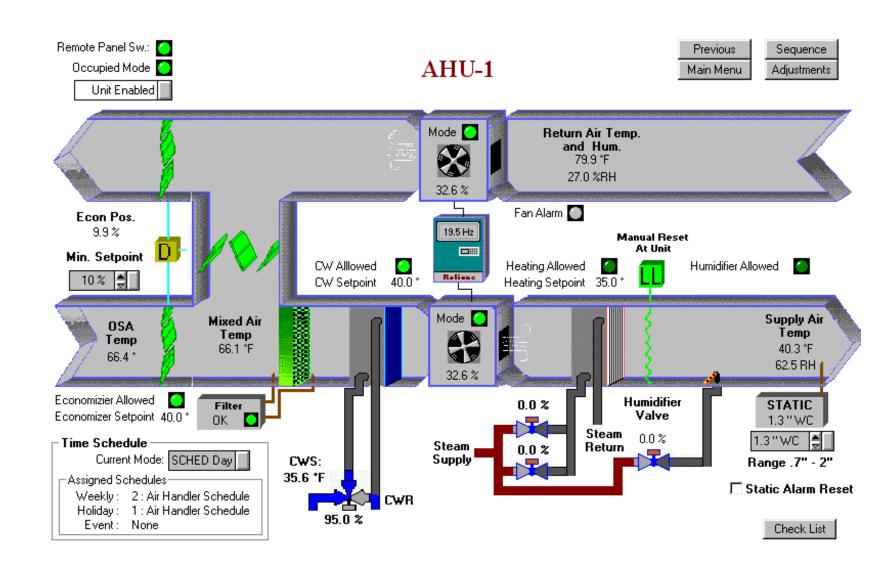
Where to start






HVAC system components

Complete systems



Controls systems

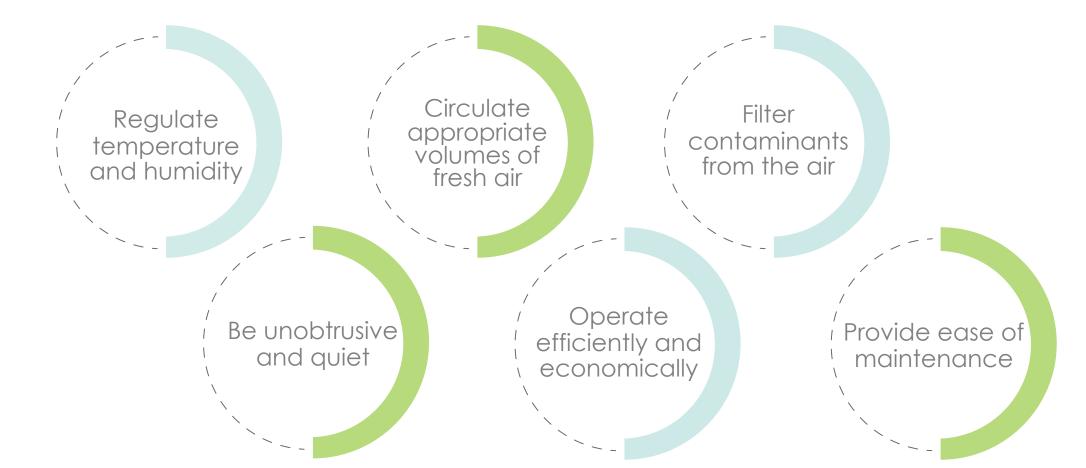
Pneumatic to DDC Controls System

Obsolete DDC System Architecture

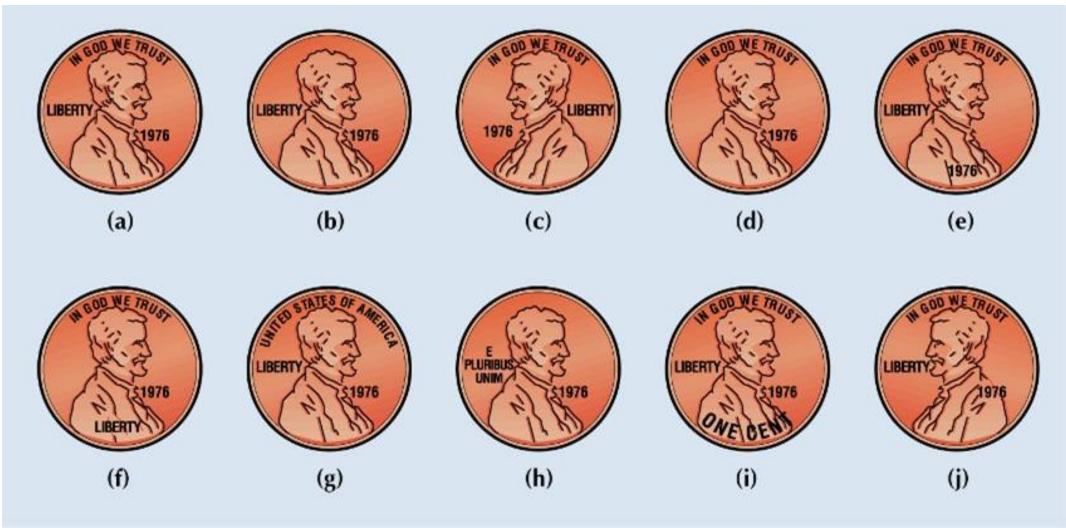
Where to start conclusion

Timing is Everything!

- Equipment Failure Risk
- ✓ Available Funding
- ✓ Facility 10 Year Master planned Items
- ✓ Upcoming Building Projects


What type of system

There may be a great deal of complexity surrounding mechanical systems, but the goal is easy to understand


System life cycle cost?

Life Cycle Costs Over 40 Years

Know what you're looking at!

SYSTEM TYPE

Existing Building Systems

System comparison

VENTILATION SYSTEM COMPARISON

			SYSTE	M CHARAC	TERISTICS						
		LOWER UPFRONT COST	ADDITIONAL VENTILATION CAPACITY	EASY OF ENERGY RECOVERY	INCREASED FILTRATION	LOW SYSTEM NOISE	EASE OF MAINTENACE	EXTENDED SERVICE LIFE	EXCELLENT OVERALL ENERGY EFFICIENCY	EXCELLENT OVERALL INDOOR AIR QUALITY	LOWER LIFECYCLE COST
	CLASSROOM UNIT VENTILATORS	х									
	GAS FIRED ROOFTOP / DX COOLING	Х	Х								
	INDOOR AHU / VAV REHEAT		х	х	х	х	х	x	х	х	x
5	INDOOR ENERGY RECOVERY / DISPLACEMENT		х	х	х	X	х	х	х	х	X

Tagline here

Budget tolerance of School Board

Amount of addition vs. size of existing building

Available floor to ceiling height

Building footprint, single-story with a sprawling footprint

Existing HVAC system capacity

What type of system conclusion

Think Through Your Decision..... After all it's a 20-40 Year Decision Who
is on
your
team?

School Administrators

Trusted Partners School Board

Maintenance Staff

E.D

In summary

why

- ✓ Improved
 Equipment
 Operation
- ✓ Reduced Maintenance
- ✓ Improved Efficiency
- ✓ Improved Indoor Air Quality and Filtration
- ✓ Students in wellmaintained facilities do better and feel better

when

- ✓ Code Compliance
- ✓ Planned
 Replacement
- ✓ Lifecycle Exceeded
- ✓ High Repair Costs
- ✓ Obsolescence
- Equipment no
 Longer Serviced
- ✓ Upcoming Building Project

where

- ✓ Central Plants (Boilers, Chillers, Condensing Units)
- ✓ Large Equipment
- ✓ System
 Components
- ✓ Complete Systems
- Equipment Failure Risk
- ✓ Available Funding
- ✓ Facility 10 Year
 Masterplan Items
- Upcoming Building Projects

what

- Design considerations (IAQ, Comfort, Lifecycle cost of Ownership, Energy Efficiency)
- Existing Building
 Systems
- BuildingAttributes
- ✓ Ease of Maintenance
- Think through your 20-40 year decision

who

- ✓ School Administrators
- ✓ School Board
- ✓ Maintenance Staff
- ✓ Trusted Partners

Questions?

NEXUS SOLUTIONS[®]

